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than rii. This effect was largest for small values of rii 
and amounted to about 1 A for rii = 0 A and M = 
0.6 A -~. Fig. 2 shows the magnitude of these shifts 
as a function of rij for two representative values of M. 
Secondly, the relative maximum peak heights de- 
crease with increasing rij, as shown in Fig. 3. Although 
calculations have been made for only two M values, 
0.3 and 0.6 A -~, the results show that  both of the 
above-mentioned effects decrease in importance with 
increasing M, that  is, with smaller temperature fac- 
tors. With single-crystal data, for example, a Gaussian 
distribution would probably give a good approxima- 
tion to the peak shapes of a cylindrical Patterson pro- 
jection for all values of rij. 

I t  should be noted that  at large values of rij (over 
4"0 A for M = 0.6 A-2), the shape given by (6) is 
closely approximated by a Gaussian function whose 
maximum is displaced to a larger value of R by an 
amount given by extrapolation of a curve like that  
shown in Fig. 2. The larger the value of M, the smaller 
is the shift and also the smaller the value of r~j at 
which the approximation can be made. The maximum 
of the shifted Gaussian is similarly given by extra- 
polation of a curve such as that  shown in Fig. 3. 

Some idea of the appropriate value of M to use in 
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the construction of a synthetic cylindrical Patterson 
projection can be obtained by examination of the 
origin peak of the observed Patterson to which the 
theoretical function is compared. Equation (6) has a 
simple form for rij = 0 and the variation of the 
position of the maximum with M may be easily de- 
rived. For example, a value of 0.6 A -2 for M was 
suggested by the origin peak shape in the observed 
cylindrical Patterson projection for poly-~,-methyl-L- 
glutamate. This corresponds to a value of about 30 A s 
for the temperature coefficient B, a not altogether 
unanticipated figure for fibrous substances with a 
relatively large degree of disorientation. 

The complete calculation of Qij(R, z, rij, zij) for a 
set of interatomic vectors from a given model is ob- 
viously a tedious task, but some applications of IBM 
digital computing methods to the problem shorten the 
time required for such a calculation considerably. 
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A statistical investigation of the relation between the signs of structure factors shows that the 
probability of the result s(h)s(h') = s(h+h') is Q/(I+Q), where 

N 

Q = exp (2e-l[UhUh, Uh+h,]) and e = ~ n ~ .  
j=l 

These theoretical predictions are found to agree well with observation. 

1. Introduction 

Say-re (1952), Cochran (1952) and Zachariasen (1952) 
have shown that, for a centrosymmetrical structure, the 
signs of structure-factors of indices (hk[), (h'kT) and 
(h+h' ,k+k' , l+l ' )  tend to be related so that  the product 

is a positive quantity. This tendency increases with 
the magnitude of the product of the unitary structure 
factors. 

If the signs of some structure factors can be found 
unequivocally by the use of inequality relations (Har- 
ker & Kasper, 1948; Gillis, 1948; Karle & Hauptmann,  
1950) then the range of known s~gns may be extended 

by assuming that  the sign relationship holds when the 
structure factors involved are all large. I t  is even 
possible to allow for some inconsistencies which arise 
from occasional breakdowns of the relationship 
(Zachariasen, 1952). 

I t  would obviously be useful to be able to calculate 
in advance the probabihty that  the sign relationship 
will be obeyed, and this may be done by using the 
results of the theory developed in this paper. 

2. The statistical  theory 
For a structure containing N atoms and having a 
centre of symmetry, the unitary structure factor 
Uh+h',k+r,t+r may be expressed as 
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U~+~,,~+r~+r = 22~ n~ cos 2~ [(h+h')x~ 
~=1 

where + (k + k')yj+ (l +l')zi] , 
N 

~ = f~ / . , v f~ .  
~=1 

I t  will be assumed tha t  n1 remains constant through- 
out reciprocal space (Harker & Kasper, 1948). For 
typographical brevity a one-dimensional notation will 
be used, and the above expression may  be written 

~V/2 
U~+~, = 2 ~ n1 cos 2~(h+h ' )x l .  (1) 

~'=1 

We shall now find the form~of the distribution func- 
tion of values of U~+~, for a range of indices h and h', 
but  imposing the condition tha t  the product UhU~, 
is constant. 

We now write (1) as 

U~+~, =2~ $~, 
i= l  

where 
,~j = 2n~ cos 2x~(h+h')x~. 

The mean value of ~i averaged over the complete 
range of h and h' will be 

~ = 2n i cos 2zt(h+h')x i 

= 2n i (cos 2zthx~. cos 2zth 'x j -  sin 2zthx i . sin 2z~h'x~) . 

The mean value of the product of two variables is the 
producti o f  their mean values, and hence 

sin 2zthx i. sin 2~th'x i = sin 2zthx i x sin 2~h'x~ = 0 .  

To find the weighted mean value of 

cos 2zthxj. cos 27~h" x i 

we make use of the equation 

UhUa, =,~Y, ~ n~n i cos 2zthx~. cos 2zth' x~ . 
i=l ~=I 

U~U~, may be considered as the sum of a number of 
variables cos 2rehx~. cos 2r~h'xi with corresponding 
weights n~n i. 

Hence 
Uh Uh, 

cos 2zthx~. cos 2zth'x1 ,v ~v U~U~, . 
,~  ~ n~n~ 
~=~ i=l 

The particular case i = j is not different from the 
general case i # j since the  variables cos 2r~hx1 and 
cos 2~h'xj are unrelated for varying h and h'. 

From this we find 

~ = 2n~UaUh,. (2) 

The central-limit theorem (Cramfir, 1946) states 
tha t  the sum of a large number, iV, of independent 
variables ~i, of mean value ~i and mean square devia- 

2 V  
tion ~ ,  is normally distributed about ~ ~j with 

/v ~=i 
2 mean square deviation ~v ~j. 

~=1 
The variables ~. are not strictly independent since 

the covariance of ~i-and ~- is 

~ = 4n~n~ cos 2zt(h + h')z~, cos 2zt(h + h')x~ 
= 4 , ~ , , ~ , .  

The normal range for which the sign relationships 
are used is tha t  for which 

Uh and Uh, ~< 0-4. 

For U's greater than this the range of the inequali ty 
relationships is reached and sign determination be- 
comes a certain process. 

Hence in general 
u ~ ,  < 1. (3) 

The coVariance is thus very small and the variables 
may  be taken as independent. Then the mean value of 

~v/2 
Uh+h, (=/~ ~,) is 

N/2 
Uh+h, = ~  2niUhUh, = UhUh, . (4) 

j = l  

The mean square value of ~i averaged over all h 
and h' is 

-h 
~i = 4n~ cos ~ 2ze(h+h')x~ 

= ~ ~ h ~ .  ~ u ' ~ .  

We assume tha t  cos2zc.2(h+h')xj  ,< 1, since UnUh, 
is small. Then $~ = 2n~. 

The mean square deviation of ~j is given by 

2 --~ z2 ~j = ~ - ~ j ,  
which gives 

3= 2 ~ ( 1 - e ~ , )  

From (3) the bracket may  be replaced by  uni ty  and 

2n~. ~]  ----- 

T h e  mean squa re  deviation of the variable Uh+h, is 
thus ~/~ 

~ 4 2 _  2 - ~ 2nj = e ,  
j = l  

iV 
2 where e is written for ~v n j .  

i=1 

The probabili ty of a value of Un+h, between Uh+h 
and Un+h,+d(Un+h,) is 

P(Uh+h')d(Uh+h,) 
= (2:71~g) -½ e x p  { - -  (2g ) - - l (Vh+h , - -  UhUw)2}d(Uh+h,). 

If we now consider the three uni tary  structure fac- 
tors Uh, Un,, Uh+h, the probabili ty tha t  Uh+h, will have 
the sign of UhUl,,, divided by the probabili ty of the 
sign being opposite, is 
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P{s(h)s(h') I } 
Q = P{-s(h)s(h')]Uh+h.]} 

exp {--(2e)-l([Vh+h,l--lVhVh,]) ~} 
exp {--(2e)-1(] Vh+h,[ +lUhVh, I)~} 

= exp {2t-lIVhVh, Uh+h,I}. (5) 

The probability, p, that  the sign relationship will 
hold is thus 

p = Q/(I+Q). 

For a structure containing N equal and resolved 
atoms the expression for Q becomes 

exp {2NI UhUn, Un+a,I} . 

3. S o m e  propert ies  of the probabi l i ty  
re lat ionship 

(i) The effect of atomic overlap 
The usual method of putting the experimental X-ray 

data on to an absolute scale depends on the fact that  
the mean reflexion intensity, (/>, is given by 

( r ; =  x ,  
where 

2~ 

Z = ~ f ~  (Wilson, 1948). 
~'=1 

In  terms of e this becomes 

( I )  = × e .  

If atomic overlap occurs the effective value of Z" 
increases; for example, two equal atoms which com- 
pletely overlap contribute twice as strongly to X as 
two similar resolved atoms. I t  is the effective value 
of Z, Ze, which should be used for scaling and simi- 
larly there is an effective value of e, ee, which should 
be used in (5). 

If the root-mean-square value of the unitary struc- 
ture-factors is (US) ½, then 

(U-~)½ = I = ]/(ee), 

and if we write 
Ud(U2) * = 7h 

then (5) becomes 

Q = exp {2~/(ee). [ThYn'~h+h']} • (6) 

The experimental determination of the values of [y] 
is unaffected by the value of ee, and ee remains the 
only unknown quantity in (6). As overlap increases 
so does the value of ee, and replacing ee by e gives the 
minimum probability of the sign relationship being 
true. 

The fact that  the efficiency of sign relationships is 
improved by atomic overlap has been pointed out by 

Cochran (1952), who derives sign .relationships from 
the condition 

Iv~adV is maximum positive. 

This condition will become increasingly true if regions 
of large Q are built up by atomic overlap, or by an 
atom of relatively great atomic number. 

(ii) The effect of structural complexity 
The distribution of the structure factors of a centro- 

symmetric structure is given by the function 

P(F)dF = (2:~Z)-½ exp {-F~/2Z}dF, 

where P(F)d,F is the probability of a structure factor 
having a value between F and ,F+dF. 

In  terms of ~ (= FIZZ) we have 

P ( r ) d r  = exp 

which is independent of the number of atoms in the 
unit cell, or structural complexity. 

A given value of the product Ya~a'~'a+a' will thus be 
equally likely for all structures, and structural com- 
plexity will influence the efficiency of the sign re- 
lationship only by its effect on the value of V(ee). 
For a structure containing N equal resolved atoms, 
[/(ee) = N-½. I t  can thus be seen that  sign relation- 
ships become less powerful for more complex struc- 
tures. 

(iii) The effect of higher structural symmetry 
A mathematical analysis similar to that  of § 2 shows 

that  the expressions for Q and p are effectively in- 
dependent of the symmetry number. The degree of 
independence is given roughly by the extent to which 

1 ,  

where n is the symmetry number. 

4. S o m e  practical  i l lustrat ions  of the stat ist ical  
theory 

(i) An empirical test of the distribution of Uh+h, 
Unitary structure factors were calculated for a 

model structure with n = 2 and ten atoms in the 
asymmetric unit. A statistical survey was made of 
more than 700 values of s(h)s(h')Uh+h, for 0.098 
<~ UhUh, ~ 0.102. The results are plotted graphically 
in Fig. 1 together with the theoretical curve for 
UhUh, = 0.1. The fit of the data is fairly good and 
agreement with the theoretical values of p will follow, 
since this is derived directly from the form of the 
function P( Uh+h,). 

(ii) Comparison of theory and results for a real structure 
Cochran (1952) published figures showing the ef- 

ficiency of the sign relationships for glutamine. The 
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ff 

0.2~0.24 
0 . 2 ~ 0 . 2 9  
0 . 3 ~ 0 . 3 4  
0 . 3 ~ 0 . 3 9  
0 - 4 ~ 0 . 4 4  

Table 1. Test of theory 
ExperhnenCal Theory 

^ ^ 

2 i/e. (~)a Q P "holds fails holds fails" 

1.375 0.832 2.30 0.697 7 4 8 3 
1-687 1.539 4.66 0.823 43 12 45 10 
2.000 2.560 12.93 0.928 38 5 40 3 
2.312 3.955 52.16 0"981 19 0 19 0 
2.625 5.786 326.10 0.997 7 0 7 0 

results are given in the form of the number of times 
the sign relationship holds and fails for various values 

of U, the mean value of the three structure factors 
involved. 

• o 120 o/% 
80 O 

/ % 
/ ,o,, 

. . ( , , ,  , 71 , , ,  ,-.o:. 
- 0"40 - 0 " 2 0  0"00 0"20 0"40 0"40 

s(h) s(/OU~+h. 

Fig. 1. 

The above comparison is uncertain because of the 
following: (a) a few of the low-order U's were over- 
estimated by 20?/0 (Cochran, 1952); (b) two atoms 
(carbon and oxygen) overlap in the hO1 projection; 

(c) [~8] ~ [UhUh, Uh+h,], where U is the mean value 
of the three unitary structure factors. The agreement 
is nevertheless good enough to be a reliable indication 
of the number of successes to be expected. 

I have been greatly helped in this work by many 
useful discussions with Dr W. Cochran. I gratefully 
acknowledge his assistance and advice without which 
many of the interpretations of the mathematical 
theory would have remained unenvisaged and un- 
published. This theory has been developed in connexion 
with work on the structures of organic compounds, 
and I am indebted to the Department of Scientific 
and Industrial Research for a grant which made pos- 
sible my participation in this research. 

Glutamine, CsOsNzH10, contains four molecules per 
unit cell (space group P212121). The scattering factors 
of carbon, nitrogen and oxygen are assumed to have 
the constant ratio 1.0:1.2'1.4, and the value of 

l/s (= (U2) t) is found to be 0.160 (the hydrogen 

atoms are not considered). The values of U given by 
Cochran are used to find ~, the value of ~ for the mean 

U of the range, which is used for calculating the 
theoretical figures (Table 1). 
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